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Determining the pressure and its distribution in solid-phase process vessels operating 
at high pressures requires the solution of an axisymmetric problem concerning the plastic 
equilibrium of a layer of a strain-hardening material compressed between shaped anvils. An 
exact solution to the problem of the plastic equilibrium of a layer between anvils exists 
for the simplest case: plane compression of the layer between flat slabs that are parallel 
[I] or inclined relative to one another [2, 3]. In other cases, the problem can be solved 
only by numerical methods. Due to the highly conditional nature of the initial assumptions 
made in the calculations (such as those regarding the character of the strain-hardening 
material) and the impossibility of accounting for all of the factors which influence the 
process by which pressure is created in the vessel, calculated results are presently only of 
an approximate nature. Thus, the use of numerical methods cannot really be considered ex- 
pedient in the given case. 

Even for the simplest case involving the problem of the compression of a layer between 
parallel slabs, the approximate solution obtained by Ii'yushin [4] is widely used in engineer- 
ing practice - despite the fairly simple form of the exact solution obtained by Prandtl. 
These solutions had existed independently of one another, but an analytical relationship 
established between them in [5] showed that the approximate solution is exact for the middle 
plane of a compressed plastic layer. In fact, the system of equilibrium equations, compris- 
ing two nonlinear equations in the Levi form 

~a ~ a2~ a2~ 
o'~ + K sin la'~-z + K cos 2a ~ = O, 

~ K s i n  2 ~  ~ 2 ~  n a 2 ~  ~7 - -  - ~ v  + K e o s  z ~ - ~ -  = 0 ( 1 )  

i s  s i m p l i f i e d  c o n s i d e r a b l y  f o r  p o i n t s  o f  t h e  m i d d l e  p l a n e  i n  t h e  c a s e  o f  a p l a n e  s t r e s s  
state and in practice reduces to a single simple ordinary differential equation 

dc d2~ 
d-~ = • K ,  dy ' ( 2 )  

where the stress components are represented by Mohr relations in terms of hydrostatic 
pressure o = (o x + Oy)/2; ~ is the angle formed by the direction of the largest principal 
normal stress and the positive direction of the x axis; o x and Oy are the normal components 
of stress in the rectangular coordinate system xy (with the x axis being located in the 
middle plane of the plastic layer relative to its thickness and with its positive direction 
coinciding with the direction of flow of the layer material); K is the plastic constant of 
this material. 

We write the relation 2~(y) as follows by making use of the Mohr relation for Txy 
and the linear thickness change of the shear component ~xy established in Prandtl's exact 
solution [i] for the problem with parallel plates 

2y 
2o~ (g) = - -  arcs in  ~ -  m 

(H is the thickness of the layer being compressed; m = ~c/K is the ratio of the stress from 
contact friction to the yield strength of the material in shear). Then Eq. (2) takes the 
form 

do 2 
d-7 = -4- K 77- m, 

Troitsk. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 6, pp. 
145-152, November-December, 1992. Original article submitted August 14, 1991. 

0021-8944/92/3306-0903512.50 �9 1993 Plenum Publishing Corporation 903 



p, rad 

0,8. 

o,~- 

o,4- 

0,2. 

2s 

,~=o,,2 ~g gO 1S- 

\ 
- ~ ~  

} j r } ~ a 

/ 
j 

, h , i , ~ i L l 

s /5 2s ~ 458 

Fig. 1 Fig. 2 

which at m = 1 is equivalent to the equilibrium equation in Ii'yushin's approximate solution 
for this problem. 

It is in fact the ease with which the exact solution is obtained in the middle plane 
that underlies the following attempt to calculate pressure in solid-phase process vessels. 
We take the equilibrium equation (2) for the middle plane of the plastic layer as the initial 
equation. This equation is valid for a layer having a cross section of arbitrary form which 
is symmetrical relative to the middle plane. Knowing the law governing the change in 2~, 
we can obtain a relatively simple equilibrium equation for the middle plane with a single 
unknown o. The form of the function 2~(y) in the present study is determined from an analy- 
sis of well-known exact solutions of the problem of the equilibrium of a layer between 
anvils. If we take the contact surfaces of the anvils as envelopes to the slip lines in 
the plastic layer and compare the positions of tangents to these lines and the slip lines on 
the contact surfaces with a fixed longitudinal coordinate, we can easily determine the range 
A of the doubled angle 2~ of inclination of the principal stress through the layer thickness 
from the middle plane to the contact surface. This range is represented as the sum 

A : --(arcsln nt  + -  p -- 2~), (3) 

where p is the angle of internal friction of the layer material; ~ is the angle of inclina- 
tion of a tangent to the profile of the contact surface in the positive direction of the x 
axis. 

It can be seen from Eq. (3) that the interval A includes information on contact fric- 
tion, the internal friction of the material, and the form of the anvils (the angle ~ of in- 
clination of the surface of the anvils), i.e., it contains information on the main factors 
which determine pressure and its distribution in the vessel. The doubled angles in the 
middle plane and on the contact surface (2~md and 2~ c) are connected by the obvious relation 

2~ c = 2~md + A. 

The quantity 2C~n d can take values of 0 and ~ in the middle plane, depending on the 
character of flow of the layer between the anvils. For flow of the material between converg- 
ing anvils, 2~md = ~ (active flow). When the anvils are moved apart by the plastic material 
as it is forced into the gap between them, 2~md = 0 (passive flow). The value of the doubled 
angle 2~(y) for points of the layer not on the middle plane or the contact surface will be 
represented (with a fixed longitudinal coordinate) in the form of the sum 2~(y) = 2~md(Y) + 
f(y), where f(y) is the variable component of the relation 2~(y). This component takes 
values of 0 and A in the middle plane and on the contact surface, respectively. Thus, the 
derivative 82~/8y is completely determined by the component f(y) (82~/~y = 8f(y)/Sy). Ana- 
logous to the representation of the interval A as a sum in Eq. (3), the variable component 
f(y) can be written as follows: 

/@) = An(u) +/o(y) + .&(9) (4) 

(fm(Y), fp(Y), f~(Y) are components of f(y) determined by the contact friction and internal 
friction of the material of the plastic layer and the form of the anvils). The individual 
components can be found from known exact solutions of special cases of the problem of the 
equilibrium of a plastic layer between anvils. In the exact solution [i] of the problem of 
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the equilibrium of an ideally plastic layer between parallel slabs, the angle 2~ is deter- 
mined only by contact friction, i.e., f$(y) = 0, fp(y) = 0 and f(y) = fm(Y)" It follows 
from the solution of this problem that 

2g 
/m (y)  = - -  a r c s i n  T m .  ( 5 )  

To check the  v a l i d i t y  of  the  assumption made r ega rd ing  the  form of  the  f u n c t i o n a l  c o m -  

ponent fm(Y), we ana lyzed  the  s o l u t i o n  of  the  problem of  the  p l a s t i c  r a d i a l  f low of  a l a y e r  
in a convergent  channel .  

By so lv ing  the  problem in a po l a r  c o o r d i n a t e  system (r0~) whose o r i g i n  co inc ided  wi th  
the vertex of the angle between the slabs and in which the direction O = 0 coincided with 
the bisector of the angle 213 between the slabs, the authors of [2, 3] isolated the func- 
tion ~(6) characterizing the change produced by contact friction in the angle between the 
principal stress and the r axis. 

Let us compare this relation with proposed relation (5). Using the usual representation 
of the stress components o r , o@ and mr0 in terms of the angle ~ (o r = o + K cos 2~, o@ = 
o - K cos 2~, ~r@ = K sin 2~, o = (o r + 08)/2) and adopting the plasticity condition (o r - 
0@)2/2 + m26 = K 2, we write the system of equilibrium equations in the form 

2 K  Or " " t  \ O0 2 K  O0 +sin2q~ b-~+l ----0, (6) 

and we write its solution as 

Inserting o into Eq. 

(o) + h ~. 

(6), we obtain the equilibrium equations derived by Nadai 

d(~ n d(o 
dO cos2~ ~ 1 '  ~ - = n t g 2 %  

(7) 

( 8 )  

which allow us to determine n and m. 

The solution of the first equation of (8) in [2, 3] is given in the form 

V~n ~ _-----~ arc tg 7-V-L---i tg T -- % (9) 

The parameter n is connected with the angle 26 between the slabs and with contact friction 
on the slabs by the relation 

~ =  ] / ~ a r c t g  7~ - l t g6  --6, (10) 
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where sin 26 = Tc/K = m. Due to the impossibility of explicitly expressing the parameter n 
through the angle 25 and contact friction m, the authors of [2, 3] represented Eq. (i0) 
graphically for discrete values of m (dashed lines in Fig. i). The solid lines show the 
dependence of n on ~ for the same values of m with the assumption that ~ changes through 
the thickness of the layer in accordance with Eq. (5). The function O(e) corresponding to 
(5) has the form 

. [ tgO~ 
q) (0) = - -  y a r c s in  [ m  t--~,)" 

(ii) 

Figure 2 shows the relation @(e) in accordance with the above assumption (solid curve) 
and in accordance with the solution in [2, 3] (dashed curve), inserting @(e) (ii) into the 
first equation of system (8) and considering that 8 = 0 and ~ = 0 in the middle plane, we 
obtain 

fn 

n = ~ § 1. (12) 

It can be seen from Fig. 1 that exact relation (i0) (dashed curves) and relation (12), cor- 
responding to the given assumption (solid curves), nearly coincide for m < 0.8. The largest 
difference is seen at m = 1 and is no greater than 5%. 

The correctness of the assumption made regarding the character of the change in the 
component fm(Y) through the thickness of the plastic layer was similarly checked for axisym- 
metric radial friction in convergent channels (this problem was solved in [2]). The solu- 
tion was obtained in spherical coordinates. 

The stress components Or, o0, o@, Tr8 were represented through the angle ~ by the 
usual relations 

2 I K c o s  9.  ~ " = ~ + V  3/r176 ~ = ~ ~  I,"T " 
% ,J- % _L am T ~ = E s i n 2 q ) ,  G = .  ' . 

3 

The plasticity condition was taken in the form 3/4(o r - o0) 2 + x~8 = K=" The differential 
equations of equilibrium in spherical coordinates 

a%ar ~ ia%~ + r t  [2cy, - -  (~o -F G~) ~- z,'o c tg  0] = 0, 

8TrO iSg0 i 
ar ~' ra'O ~' -7 [3T~o + (ao - -  a~) c tg  0] = 0 

take the following form after the relations for the stress components are inserted into them 
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~z  +cos2q~(ap  ) 1 2Kar 3-~ + ] / ~  + T c tg0 sin 2~p = 0, 

2 KO0 "+- sin 29 ~ + '-F, = O. 
(13) 

As in the case of the plane problem, o is represented in the form 

o=2K[nln a (o(0)] + K 
r ]/~ (14) 

With e = 0, ~(8) = 0. After we insert (14) into (13) we obtain differential equations for 
n and m: 

d9 _ ~ l ctg 0 tg 2(p - -  ]/ '3, do) 9 F i d o 3 1  

Only the results of numerical solution of this system were presented in [2, 3]. 

If we assume that the change in the angle ~ through the layer thickness - dependent 
only on contact friction on the slabs (as in the plane problem of flow between parallel or 
inclined slabs) - is determined by a single relation ~(e) =-(1/2) arcsin (m(tanO/tan~), then 
after we insert it into the first equation of system (15) we obtain a simple expression for 
n as a function of the angle ~ between the generatrices of the channel and the friction co- 
efficient on them: 

n = ~ + V~. (16) 

Figure 3 shows values of ~(8) from the numerical solution of system (15) (dashed lines) and 
from the use of assumption (i0) (solid lines) for m = 1 and $. Figure 4 shows the dependence 
of n on the angle ~ between slabs for m in accordance with the results of the numerical solu- 
tion of system (15) (dashed curves) and approximation (16) (solid curves). It can be seen 
that the difference between the approximate and exact solutions is no greater than 10%. 

Proceeding on the basis of the above comparison, we write the function for the change in 
the angle f(y) through the layer thickness for an ideally plastic layer as f(y) = 2~(e) + 
20. It follows from the equation 2~(e) = fm(Y) that 2e = f~(y). The final form of the 
functional component f~(y) is determined from the relations between the polar and rectangular 
coordinates: 28 = arctan (2y/H tan~), for an ideally plastic layer 

Oy 
(17) 

The equation of equilibrium of a plastic layer in the middle plane takes the form 

0o 2 
~-7 = - -  ~- K (m -- 2 tg 15). 

The character of the change in the third term 2~(y) in Eq. (4) can be determined from the 
solution of the Hartman problem on the compression of a layer of a generalized plastic 
material (p # 0) between parallel slabs [6]. In this case, the component f(y) depends only 
on the contact friction on the slabs and the internal friction of the material. Knowing the 
character of the functional component fm(Y) determined by contact friction, we can use the 
solution of the problem to find the character of the second functional component fp(y) 
determined by the internal friction of the material. Based on analysis of the solution of 
the Hartman problem, the derivative is represented in the form 

p (i -- 0,5 rn2). 
a ~7. ~.(v ) (18) 

By finding the value of the derivative in the above equation, we can determine the 
stress state of a strain-hardening plastic layer between rough anvils of arbitrary form. 
Such a solution was used to find pressure and its distribution in a certain variant of a 
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solid-phase process vessel [7] with shaped anvils. Figure 5 presents a schematic diagram 
of the working zone of the vessel (lower part). Central spherical depressions and two rows 
of concentric depressions with a smooth profile were made on the ends of the anvils. The 
profile of the projections on the working surface of the anvils is described by arcs of 
radius rl, while the profile of the depressions is described by arcs of radius r. The 
working container and compression rings, made of a material with the internal friction p, 
are located between the shaped anvils in the central and annular depressions, respectively. 
Pressure is created with the compression of the container between the working ends of the 
anvils by means of the set of compression rings. Finding the pressure in the vessel reduces 
to determination of the stress state of the container and the compression rings. The problem 
was solved in a cylindrical coordinate system r0z. Here, the z axis coincides with the 
direction of convergence of the dies, while the plane r8 coincides with the middle plane of 
the container and the compression rings. The material of the container and the compression 
rings was assumed to be a generalized ideally plastic material having a shear strength that 
obeys Coulomb's law. If we assume that this law is linear in character, i.e., if we assume 
that the envelope of the Mohr's circles is a straight line, then the plasticity condition 
can be represented in the form 

K - - -  K o c o s p  ,~ o s i n  p, (z9) 

where o = (o r + Oz)/2 is the mean stress in the plane of the axial section. The components 
Or, Oz, Trz of the stress state in the meridional plane rz will be represented by Mohr rela- 
tions as a function of the mean stress o (o < 0) in this plane and the angle ~ of inclina- 
tion of the greatest principal stress in the positive direction of the r axis: 

e~ = o + K cos 2o~, z~ = a -- K cos 2~, r r ~ = K s i n 2 a .  (20) 

Adopting the Harr-Karman condition for complete plasticity o 8 = o I = o 2 and assuming a 
plastic flow regime corresponding to the edge of a Tresca prism 

~ 2 - - o  3 = 2K, ( 2 1 )  

we obtain the following for the hoop stress 

Oo = s F K .  
( 2 2 )  

With allowance for Eqs. (19)-(22), the system of differential equilibrium equations in the 
cylindrical coordinate system rez 
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O0 r OTrz Off z OTrz 
Or ~ Oz @ (Or - ~o)/r = 0, "~z + ~ + rrz/r = 0 

can be represented in the form 

aG K sin 9 o2~ 02a OK cos 2cr -- OK 
Or - -  " a - 7 7 / - -  K c ~ 1 7 6  + K ( I  - -  c o s 2 ~ ) / r - -  ~r o-f sin 2a '  

OK . ,, 0 2 a  
ozO-~z = ozOK cos 2o~ -- ~Fr sm 20r -- K sin 2o~ o2=Oz - -  K cos ~cr ~ -- K sin 2air  

and, for the middle plane, can for practical purposes be reduced to a single equation 

O(~4-K~ KO2a ( 2 3 )  
(Jr dz  " 

With allowance for (4), (17), and (18), Eq. (23) takes the form 

o ( a §  K) K - -  [m - -  2 t g  [3 @ o (1 - -  0 , 5  ra2)], ( 2 4 )  
Or H (r)/2 

where H(r)/2 (the running thickness of the compressed rings and container) depends on the 
profile of the anvils; tan~ = (d(H(r)/2}/dr). The final form of Eq. (24) is determined by 
the form of the anvils (the relation H(4)). 

In the solution of Eq. (23), the normal and shear stresses on the free surfaces are 
taken equal to zero. Two regions are distinguished in the compressed materials of the rings 
and container: the outer region, in which all of the material between the anvils is assumed 
to be in the plastic state (and contact friction on the surfaces of the anvils is assumed to 
be equal to the ultimate strength of the compressed material in shear (m = i); a central 
region in which only that portion of the compressed material adjacent to its middle plane 
is in the plastic state. The boundary separating the rigid and plastic regions usually 
serves as the slip line, which is drawn from the coordinate origin to the contact surface 
of the anvils. To simplify the solution of Eq. (24), the region of the plastic state in the 
central zone was delimited by a circle arc passing through the origin so that a tangent to 
the arc formed the angle v/4 + p/2 with the r axis (as the slip line). The plastic region 
in the central zone was also bound by a tangent to the anvil profile at the point r = r 0 
(determined, as in [5], from the mass balance). The shear stresses on the boundary between 
the rigid and plastic zones of the central region were taken equal to the ultimate strength 
of the container material in shear. 

Although the difference between the rigid and plastic zones of the central region 
(bounded by the slip line and the circle arc) was almost negligible, replacing the slip line 
by a circle arc appreciably simplified the solution of differential equilibrium equation 
(24). 

In the case when the plastic zones are bounded by circle arcs or segments of straight 
lines, numerical integration of Eq. (24) is unnecessary. Given the above assumptions, we 
use the formula for the integral of Eq. (24) to perform calculations over the entire interval 
of r from 0 to the free boundary. The parameters characterizing the properties of the 
material of the compression rings and container were taken from data in [8]. In the center 
of the vessel (with small r), the angle of inclination of a tangent to the boundary between 
the rigid and plastic zones increases to values at which the pressure gradient in (24) be- 
comes equal to 0 and subsequently changes sign, i.e., this angle increases to values at 
which a trough appears on the curve describing the pressure distribution at the center of 
the middle plane. From the viewpoint of flow kinematics, the change in the sign of the 
pressure gradient means that there is a change in the direction of flow of the material. 
Since we did not allow for all of the factors that might have influenced the flow direction 
in the compressed material (the anvils were assumed to be rigid, the materials of the con- 
tainer and compression rings were assumed to be incompressible and nonporous), the compressed 
material should have flowed in only one direction - from the center to the pheriphery of the 
vessel over the entire interval of r from 0 to its free boundary. The change seen in the 
sign of the gradient do/dr in the center of the vessel is connected with the fact that the 
theoretical boundary of the plastic zone at the center of the vessel does not coincide with 
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the actual boundary, i.e., in accordance with Eq. (24), the angle of inclination of the 
tangent to the boundary of the plastic zone cannot exceed the value 

2 tg ~ _> m + p(1 - 0.SraD. 
( 2 5 )  

Figure 5 shows the boundary of the plastic zone at the center of the vessel when 
corrected with allowance for condition (25). Instead of being bounded by the slip line or 
the substitute circle arc, this zone is delimited by a tangent to it drawn at an angle in 
accordance with condition (25). The presence of a connical plastic region at the center of 
the vessel means that there is a nongradient pressure region at this location. This has 
been confirmed by numerous experiments. The new boundaries of the plastic zones preclude 
point contact with the rigid zones located on opposite sides of the middle plane of the con- 
tainer. This situation leads to nearly infinite theoretical values of the stress components 
at the center of the vessel [9]. Figure 5 shows the pressure distribution in the middle 
plane of the compressed rings and container. 

We used the distribution of the component o z in the middle plane to find the force 
and construct the calibration curve N = f(P0), where P0 = (Or + ~ + Oz)/3 is the pressure 
at the center of the vessel. Figure 6 shows experimental results and results from calcula- 
tion of the function N = f(P0) for a variant of the vessel in [7] with a central hole 35 mm 
in diameter. 
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